Monday, August 29, 2016

Herp Haikus





Every time I teach Herpetology, I ask the students to make a haiku on their final exam that encompasses something they've learned. It needs to include both reptiles and amphibians, and follow haiku rules (3 lines only, with first and last having 5 syllables and second having 7). I thought it was time to start immortalizing these gems. Here, in no particular order, are the haikus of the fabulous and talented herpers of the Cal Poly class of summer 2016!

Frog’s feet greatly webbed
Draco’s skin flap opens wide
They glide in the sky

Snake is a noodle
Salamander is slimy
Slimy noodle fun!

Garter in water
The bullfrog fails its escape
Vengeance of locals

Treefrogs have toe pads
Snakes’ ventral scales overlap
They have better grip

Vipers have venom
Newts can carry a toxin
Let’s leave them alone

Some Caudata swim
Some cool snakes can also swim
Lat. undulation

Order Squamata
Order Gymnophiona
Know taxonomy

Snakes do a tongue flick
But salamanders shoot it
Plethodontidae

Aves soar high up
Caecilians burrow deep
Herps rule the world

Treefrogs are so small
Crocodilians are huge
What a crazy range

Rattlesnakes rattle
Amphibians have short ribs
Herping is so fun

Ensatina swim
Aspidoscelis are fast
They are hard to catch

Snake’s prehensile tail
Anura’s permeable skin
Pollution in bad

Bullfrogs are spreading
And so are red-eared sliders
Causing extinctions

Golden toads are dead
Tuataras are alive
Humans are evil

Snake strikes naïve mouse
Mama python warms her babies
Golden frog waves bye

And last but not least, my favorite!
Images from Squishable.com

Tuesday, June 7, 2016

Snakebite in Dogs


Snakebite happens. Our inquisitive canine friends love to run through thick grass and stick their noses down holes in search of squirrels and other delights.   

Ghost got a painful and potentially life-threatening bite to the snout from a Northern Pacific rattlesnake. He was treated with two vials of antivenom and made a full recovery. Photo: Ashley Ventimiglia

I’m giving a presentation on local rattlesnakes to SLO Search & Rescue today, so I thought I’d look up some info on snakebite in dogs. I found four relevant and recent (within the past five years) scientific publications on snakebite prevention and treatment. I found some of the information really interesting, so I am posting to share.

1. Most dogs survive snakebite, but most of these dogs treated were with antivenom.
A retrospective study (4) on 272 rattlesnake envenomations in the Phoenix, Arizona area found that 97% of envenomated dogs survived the bite, but most had been treated with antivenom, so it is hard to determine how much the antivenom improves outcomes. Younger dogs were more likely to survive, and few dogs had allergic reactions to antivenom. Another study (3) found that antivenom stabilized or terminated the effects of the venom.

2. There is little evidence that the “rattlesnake vaccine” works.
A vaccine made against Western Diamondback rattlesnake venom can be obtained from a veterinarian. Although the manufacturer states that it has evidence that the vaccine works, no experimental studies on its efficacy in dogs have been performed. One study (4) found no difference in outcome in dogs who had the vaccines and those that did not. Another study (2) vaccinated mice with the vaccine and found some protection against venom from Western Diamondbacks but little protection against venoms from Northern and Southern Pacific rattlesnakes.

3. No data are available on the efficacy of rattlesnake avoidance training.
Given how efficacious dog training can be, it seems that rattlesnake avoidance training could work very well. However, dogs could still be bitten accidentally (e.g., when running through tall grass), even if they have been trained to avoid the scent and/or warning defensive behavior of a rattlesnake. There have not been any studies on this (admittedly, this would be very logistically difficult). One paper mentions that this training is “overall unreliable and may provide a false security for snakebite prevention but may be efficacious in a well-trained dog. The only preventative measures are leash walking and avoiding possible snake habitats that have poor visibility” (1).  

Summary: Outcomes for envenomated dogs are good if dogs are brought to the veterinarian for antivenom treatment right away. If possible, try to prevent your dog from exercising, which could speed up dispersal of venom through the body. Vaccines may work against Western Diamondback bites, but we do not have any data on this. Rattlesnake avoidance training could help, but keeping dogs on leash is the best way to prevent bites.

Disclaimer: I am not a veterinarian. Always seek medical advice from your veterinarian.

Sources:

(1) Armentano and Schaer. 2011. Overview and controversies in the medical management of pit viper envenomation in the dog. Journal of Veterinary Emergency and Critical Care 21:461-470.

(2) Cates et al. 2015. Comparison of the protective effect of a commercially available western diamondback rattlesnake toxoid vaccine for dogs against envenomation of mice with western diamondback rattlesnake (Crotalus atrox), northern Pacific rattlesnake (Crotalus oreganus oreganus), and southern Pacific rattlesnake (Crotalus oreganus helleri) venom. American Journal of Veterinary Research 76:272-279.

(3) Peterson et al. 2011. A randomized multicenter trial of Crotalidae polyvalent immune Fab antivenom for the treatment of rattlesnake envenomation in dogs. Journal of Veterinary Emergency and Critical Care 21:335-345.

(4) Witsil et al. 2015. 272 cases of rattlesnake envenomation in dogs: Demographics and treatment including safety of F(ab’)2 antivenom use in 236 patients. Toxicon 105:19-26.

Friday, May 20, 2016

Keep Your Students Engaged in a Large Lecture

Good morning, educators. Who among you has worked for hours to create a stimulating and informative lecture, and halfway through delivering said lecture has looked up to see this?

Students get easily bored in a one-way lecture, when nothing is asked of them.

Wouldn't you rather see something more like this?

Students working together to solve problems stay engaged and enjoy better learning outcomes.
Image from http://serc.carleton.edu/.

Me, too. As my class sizes get larger and larger, it gets more and more challenging to engage students in their own learning. However, the days of one-way flow of information from a "sage-on-stage" to students are over. Active learning increases student performance, and plain and simple, as educators we should be promoting pedagogy that allows students to thrive. Harvard Physics Professor Eric Mazur founded Learning Catalytics due to his belief that research into the effects of teaching styles on student learning shows that it is "unethical to lecture exclusively."

Lest you get your hackles up, Mazur does not have a problem with lecturing. He has a problem with only lecturing

Enter Learning Catalytics, an in-class response system that will keep your students' attention and help them achieve their learning outcomes.



I had used clickers since their inception. But when Pearson bought Learning Catalytics in 2014, I got on board. As a Pearson textbook author, I attend an annual conference where I was able to see Learning Catalytics in action, and I was blown away.

So what is this Learning Catalytics I speak of? The quick answer is that it is a sophisticated program that allows students to use their own web-enabled devices to answer questions during your lecture.

Learning Catalytics has many question types, not just multiple choice. Image from pearsoned.co.uk.

Here is a quick summary of why Learning Catalytics is my choice for engaging my students in the large lecture.
1. Because they use their own phones or laptops, students always come to class prepared. (When I used to use clickers, students would constantly forget them, or they would break or run out of batteries.)
2. Learning Catalytics has many question types, not just multiple choice. I can do everything from asking anatomy students to identify a specific bone by clicking it on an image, to collecting data from hundreds of students conducting an in-class experiment. You can choose from thousands of pre-loaded questions from Pearson products, or you can create your own.
3. Learning Catalytics is very economical. It is free with Pearson book packages, or costs $12 per semester or $20 per year.
4. Learning Catalytics makes my life easier by its flexibility. I use a simple toggle bar to choose the point values of modules (e.g., a class meeting) based on participation and performance. Scores can be uploaded directly into a course management system (Moodle, Blackboard, etc.). I can easily review all aspects of performance, by the entire class or by individual student.

Basically, Learning Catalytics allows me to customize how I use active learning in my course, makes it high-tech, and reduces my workload substantially.

Learning Catalytics has a high-tech yet user friendly interface that students enjoy and faculty can easily employ.
Image from https://www.pearsonhighered.com

When I discuss Learning Catalytics with other educators, they express reluctance to try it based on three main issues:
1. Concern about wireless capacity. Students need to be online to use Learning Catalytics, and if your campus's wireless capacity is insufficient, then you will have a problem. Talk to your IT Department before adopting the technology. (Hint: I advise students to use their smartphones instead of computers so that they log in using their data in the event the wireless is overloaded. Learning Catalytics uses very little data).
2. Concern that not all students have a web-enabled device. I have taught thousands of students using Learning Catalytics and I have not had a single student who did not own a smartphone, tablet, or laptop. This will vary by student population. If a large proportion of your students do not have devices, then Learning Catalytics is not for you. (Hint: If you are concerned that some of your students lack devices, talk to your university's media center about a tablet rental or borrow program).
3. Concern about allowing (in fact requiring) computer and phone use in the classroom. Many educators are worried that this will cause distraction and negatively impact student learning. This is valid considering study after study showing that note-taking with electronic devices reduces learning and performance compared to handwriting notes. However, I find that a short and frank discussion at the beginning of the class solves this. I tell students that handwritten notes are best, and obviously using social media during lecture will impact their learning and performance. Many students take this to heart and use their devices solely to answer questions. Also, many students successfully take high-tech, high quality notes on their devices. The fact is that we are in the electronic age, and students are using devices more and more, and in my personal opinion, banning electronic note-taking is out-of-date and out-of-touch. Finally, if students are on social media during a significant portion of lecture, then I would take responsibility for this as an instructor. If you keep them engaged, they will not have time to snapchat.

With proper pedagogy, students can stay engaged in lecture even when they use computers. Image: http://www.huffingtonpost.com/

Here are some best practices for using Learning Catalytics based on my experience. All classes are different, so your style will be, too.
1. Give some points for performance, not just participation. Students try harder and take the exercises more seriously when their points depend on getting the answer correct. On the other hand, scores based entirely on performance can discourage students who get many answers wrong. I use 50-50 participation and performance.
2. Make the point values significant enough that they can affect students' grades. This encourages attendance and effort, and rewards students for trying very hard (which will hopefully improve their learning and exam performance, too). Points in my classes are worth 5-10% of the final course grade.
3. Deploy many questions during a lecture. If you only ask a couple of questions, you might as well be giving a one-way, traditional lecture. This also helps maintain students' attention span. I try to ask at least 10 questions in a 80-minute lecture.
4. Deploy meaningful questions that ask students to apply their knowledge. I once attended a lecture where the instructor taught a concept then asked students to vomit that concept right back using clickers. I sat in the back and watched as comatose students barely roused their index fingers to answer these questions. This is not effective pedagogy. Instead, ask students questions that involve applying their knowledge to new situations. Tell them to think about it, talk to their neighbor, and then answer. In my opinion, this is the key to helping students learn the material and develop as critical thinkers.

One more thing- Learning Catalytics has an awesome Team-Based Learning mode that I use for certain classes. Click here to learn more about this 100% active learning mode of instruction.

How do you get started? Go to the Learning Catalytics website and register for an account. For more information and technical assistance, contact your Pearson representative.

This blog post was stimulated by my participation in a Reinventing the Large Lecture learning community organized by the Cal Poly Center for Teaching, Learning, and Technology.